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SUMMARY

This article introduces an essentially non-oscillatory Crank–Nicolson (ENO-CN) scheme for the numerical
solution of unsteady incompressible Navier–Stokes (NS) equations. ENO-CN utilizes the second-order
upwind ENO scheme for the approximation of the convection term in the explicit step, while everything
else is discretized by the central finite volume method. It has been numerically verified for NS equations
in 2D that the resulting algorithm is non-oscillatory for a large range of Reynolds numbers and less
dissipative than the conventional upwind methods and deferred correction methods. The new approach
can be extended for 3D problems straightforwardly. Copyright q 2007 John Wiley & Sons, Ltd.
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1. INTRODUCTION

Let � be a bounded domain in the two-dimensional (2D) space and J = (0, T ], T>0. Consider
the unsteady, incompressible, viscous Navier–Stokes (NS) equations:

(a)
�(�v j )

�x j
= 0, (x, t) ∈ �× J

(b)
�(�vi )

�t
+ �(�v jvi )

�x j
=− �p

�xi
+ ��i j

�x j
+ �gi , (x, t) ∈ � × J

(1)
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where � is the density, v= (v1, v2) denotes the velocity, p is the static pressure, g= (g1, g2) is
the gravity vector, and s= (�i j ) is the viscous part of the stress tensor defined by

�i j = �

(
�vi

�x j
+ �v j

�xi

)
+

(
� − 2

3
�

)(
�v1

�x1
+ �v2

�x2

)
�i j

Here, � and � are, respectively, the shear coefficient of viscosity and the bulk coefficient of viscosity,
and �i j denotes the Kronecker delta. We have adopted the Einstein summation convention.

It is now well known that for large Reynolds numbers (Re := �/�), the standard central
schemes for the convection term easily introduce non-physical oscillation, while upwind schemes
smear out the sharp-fronts of the solution. Thus, in the simulation of such convection-dominated
flows, the most challenging issue is to suppress both non-physical oscillation and numerical
dissipation.

Various numerical methods have been suggested to overcome these difficulties. Among oth-
ers, interesting methods are the streamline diffusion methods [1] and the discontinuous Galerkin
methods [2, 3]. Methods evolving the numerical solution along characteristics are semi-Lagrangian
methods [4, references therein], ELLAM [5, 6], and particle-mesh methods [7]. For solving hy-
perbolic conservation laws and Hamilton–Jacobi equations, high-resolution methods have been
studied; see MUSCL [8, 9], QUICK [10], and ENO [11, 12], which are often integrated with ex-
plicit time-stepping procedures to be total variation diminishing (TVD) schemes. However, the
approximate solutions of these relatively new methods may still exhibit either over- or under-shoots
for convection-dominant flow problems.

This article is concerned with an essentially non-oscillatory Crank–Nicolson (ENO-CN) scheme
for the numerical solution of (1). The standard Crank–Nicolson (CN) method is strictly non-
dissipative but easily oscillatory for non-smooth solutions of convection-dominated flows. To
suppress the non-physical oscillation, we will replace the central scheme applied to the explicit
convection term by one of the high-order upwind schemes. We have found that the second-order
essentially non-oscillatory scheme (ENO2) [11, 12] is particularly appropriate for high-resolution
numerical solutions for convective flows.

The organization of this article is as follows. The next section briefly reviews the second-order
projection method of the NS equation (1) suggested by Choi–Moin [13]. In the same section, we
introduce an ENO-CN procedure which is more effective than conventional deferred correction
methods. Section 3 shows numerical examples which simulate viscous flows in lid-driven cavities.
Our development and experiments are concluded in Section 4.

2. ALGORITHMS

Partition J into 0= t0<t1< · · · <t Nt = T , for a positive integer Nt . Define �tn = tn − tn−1, and
gn(x)= g(x, tn) for a function g of independent variables (x, t) ∈ �× J . For a simple presentation,
we define an operator Hi (v) representing discretized convective and diffusive terms:

Hi (v) = �(�v jvi )

�x j
− ��i j

�x j
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Hereafter spatial approximations would be formally expressed; we will adopt second-order finite
volume methods. Then, the CN scheme for (1b) can be formulated as follows:

(�vi )
n − (�vi )

n−1

�tn
+ 1

2
[Hi (vn) + Hi (vn−1)] = −1

2

(
�pn

�xi
+ �pn−1

�xi

)
+ �gi (2)

When the spatial derivatives are approximated by second-order schemes, scheme (2) shows the
truncation error of O((�tn)2 + |�x|2) for smooth solutions.

One approach for the simulation of NS flows is to adopt one of the projection methods [14, 15].
Here, we briefly review the second-order projection method for (2) suggested by Choi–Moin [13],
which consists of three fractional steps for the advancement of a time level:

(a)
(�vi )

∗ − (�vi )
n−1

�tn
+ 1

2
[Hi (v∗) + Hi (vn−1)] = −�pn−1

�xi
+ �gi

(b)
(�vi )

∗∗ − (�vi )
∗

�tn
= 1

2

�pn−1

�xi

(c)
(�vi )

n − (�vi )
∗∗

�tn
= −1

2

�pn

�xi

(3)

In the first step of the above algorithm, the velocity v∗ is advanced with the pressure explicitly
treated. Note that this step is nonlinear and, therefore, it should be solved iteratively up to the
satisfaction of a narrow tolerance. In the second step, half the old pressure gradient is removed;
the final step computes the velocity in the new time level, after solving the Poisson equation,

�

�xi

(
�pn

�xi

)
= 2

�tn
�(�vi )

∗∗

�xi
(4)

which is obtained to fill the requirement that the new velocity should satisfy the continuity
equation (1a).

The nonlinear problem (3a) can be linearized by, e.g. the Newton method and the Picard iteration;
we will employ the Picard iteration. Special care must be taken in order for the convection term
not to introduce non-physical oscillation nor excessive numerical dissipation. One method is the
deferred correction [16]: Given {v∗,0

i }, find {v∗,k
i }, k�1, by solving

(�vi )
∗,k − (�vi )

n−1

�tn
+ 1

2
∇UD
h · (�v

∗,k
i v∗,k−1) − 1

2
∇CD
h · s∗,k

= −1

2
[(1 − �)∇UD

h · (�vn−1
i vn−1) + �∇CD

h · (�vn−1
i vn−1)]

+1

2
∇CD
h · sn−1 + Fi + �

1

2
[∇UD

h · (�v
∗,k−1
i v∗,k−1) − ∇CD

h · (�v
∗,k−1
i v∗,k−1)] (5)

where ∇UD
h and ∇CD

h are, respectively, the upwind (first-order) and central (second-order) approx-
imation operators, Fi denotes the right side of (3a), and � is a blending parameter (0���1). The
solution in the previous time level can be utilized as the initial value, i.e. v

∗,0
i = vn−1

i .
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Higher resolution can be obtained for a larger �, but the blending parameter is not allowed to
be near one. It has been observed from various numerical experiments that blending parameters
between 0.4 and 0.75 result in a non-oscillatory solution having a reasonably high resolution.
However, the choice of � is often problematic; see [16] for details.

Now, we are ready to introduce a new method called the ENO-CN procedure for (3a):

(�vi )
∗,k − (�vi )

n−1

�tn
+ 1

2
∇CD
h · (�v

∗,k
i v∗,k−1) − 1

2
∇CD
h · s∗,k

= −1

2
∇ENO
h · (�vn−1

i vn−1) + 1

2
∇CD
h · sn−1 + Fi (6)

where ∇ENO
h is one of high-order upwind ENO schemes [12]. Here, we choose the second-order

ENO scheme (ENO2).
Note that ENO-CN (6) differs from (5) in the way of blending. In ENO-CN, the convection

term has been approximated by a high-order upwind ENO scheme only in the explicit step. It
should be noticed that ENO-CN introduces no extra parameter.

In order to show the effectiveness of ENO-CN, we apply the new algorithm to the following
one-way wave equation (of no diffusion):

ut + ux = 0, (x, t) ∈ (−2, 14)× (0, 10]

u(x, 0) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

1 if − 1�x�0

x − 1 if 1�x<2

3 − x if 2�x<3

0 elsewhere

(7)

Figure 1 depicts one-way wave solutions at t = 10 computed by three different methods:
ENO2 with the second-order Runge–Kutta scheme (ENO2-RK2), ENO3 with a TVD third-order
Runge–Kutta scheme (ENO3-RK3), and the new algorithm (ENO-CN or ENO2-CN). Set hx = 0.01
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Figure 1. One-way wave solutions at t = 10, shown on the interval [8, 14].
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and the Courant number, �t/hx = 0.8. As one can see from the figure, ENO-CN has introduced
no non-physical oscillation and simulated the solution better than ENO2-RK2 and ENO3-RK3.
Note that ENO-CN has a second-order accuracy at best; in practice, it is better than ENO3-RK3,
a third-order method.

The above example shows an interesting aspect of the CN procedure. It can effectively suppress
dissipation as far as the numerical solution does not involve non-physical oscillation. (As mentioned
before, the CN method is non-dissipative for all frequency components of smooth solutions.) For
the numerical solution of linear convection-dominated flow problems in 2D, ENO-CN has been
analyzed to be stable when the Courant number is set not larger than one, and it in practice has
proved an accuracy order of 1.6–1.9 in the least-squares (L2) norm [17].

When ENO-CN is applied for the numerical solution of NS equations, we do not know its
mathematical properties in accuracy and stability. However, it has been verified from various
numerical examples that it is more accurate than the deferred correction method (5) and stable for
all choices of timestep size with which the Picard iteration converges. We will show an example
in the following section.

3. NUMERICAL EXPERIMENTS

Let �= (0, 1)2, the unit square, and �= ��, its boundary. Consider two lid-driven cavity problems
of which the boundary conditions are specified as follows: for t ∈ J = (0, T ], T>0,

CP1 : v(x, y, t) =
{

(1, 0) on {(x, y)∈ �|y = 1}
(0, 0) else on �

CP2 : v(x, y, t) =

⎧⎪⎨
⎪⎩

(1, 0) on {(x, y)∈ �|y = 1}
(min(1, t/10), 0) on {(x, y)∈ �|y = 0}
(0, 0) else on �

(8)

Set T = 20. The density �≡ 1 and the shear coefficient of viscosity � = 3.125× 10−4. (So the
Reynolds number Re= 3200.) The bulk coefficient of viscosity is set as � = 2

3�, for simplicity. The
initial values are all set to zero: v(x, y, 0) = p(x, y, 0) = 0, (x, y)∈ �. The domain is partitioned
into uniform Nx × Ny cells, and the timestep size �t is set as 2

3�x . Define vertical cross sections as

X� ={(x, y)∈ �|x = �}, 0���1

Figure 2 shows solution profiles of the horizontal velocity component (v1), for Nx = Ny = 200
and Nx = Ny = 400, on X0.5 for CP1 (left) and on X0.8 for CP2 (right). For the deferred correction,
we set two values for � : 0.0 and 0.5. It is apparent from both the figures that the solutions converge
to the one obtained by ENO-CN with Nx = Ny = 400, as the mesh is refined. ENO-CN has resulted
in more accurate and sharper velocity profiles than the deferred correction; its solution on the coarse
mesh (Nx = Ny = 200 and �t = 1

250 ) reveals a better accuracy than that of the deferred correction
method on the fine mesh (Nx = Ny = 400 and �t = 1

500 ). Note that ENO-CN has already converged
on the coarse mesh.
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Figure 2. Profiles of the horizontal velocity component (v1) on X0.5 for CP1
(left) and on X0.8 for CP2 (right).

It has been verified from various examples that ENO-CN is more accurate and resolves sharper
velocity profiles than the conventional deferred correction methods. ENO-CN has introduced no
non-physical oscillation for timestep sizes of the Courant number not larger than one.

4. CONCLUSIONS

We have introduced an essentially non-oscillatory Crank–Nicolson (ENO-CN) procedure for the
numerical solution of unsteady incompressible Navier–Stokes equations. In order to effectively
minimize numerical dissipation and suppress non-physical oscillation arising in numerical solutions
of large Reynolds numbers, the new procedure incorporates the second-order upwind ENO scheme
for the approximation of the convection term in the explicit step, while everything else is discretized
by the central finite volume method. Our resulting algorithm has proved superior to the conventional
upwind methods and deferred correction methods.
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